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O Part 1: Impedance Preserving Discretization

[0 Part 2: Absorbing Boundary Conditions (1-sided DtN map)

B Joint work with Tassoulas, Druksin, Lim, Zahid, Savadatti,
Thirunavukkarasu

0 Part 3: Complex-length FEM for finite domains (2-sided DtN map)
B Joint work with Druskin, Vaziri Astaneh

[0 Part 4: Inversion for Near-surface Geophysics
B Joint work with Vaziri Astaneh




Partl. Impedance Preserving Discretization
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Model Problem
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O 3D wave equation in free space - — +—=—=
ox* oy® o0z° c¢° ot

iky y+ik,z—iot

O Fourier transform in t, y, z, with u=Ue
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[0 Exact solution: U = Ae™ +Be ™, where k is the horizontal wavenumber

O U =e®=y=e®™" jig5 3 plane/evanescent wave




Finite Element Solution on a Uniform Grid in x

o°U

0 FE discretization of: — —k?U =0

OX?

0 Element contribution matrix with uniform element size of h:
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[0 Assembly results in the difference equation: BUJ._1+2AUJ- + |3Uj+l =0




Changing Mesh Size: Reflections

[0 A simple analysis using two uniform meshes with
different element sizes (h, H), but the same material

0 What happens when a right propagating wave hits the interface?
B Exact solution - just passes through

B Finite element solution - reflections due to impedance mismatch

_Z,-Z,  Z,: discrete impedance of left domain
~ Z,+2Z, Z,:discrete impedance of right domain




Computing Discrete Impedance (Half-space Stiffness)

[0 Basic idea: discrete half-space + finite element = discrete half-space
FNEY I s R el M N
= = ={ 1= A*-72=B
B A+Z ||U, 0 B A+Z ||U,] 10
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Error term

O

Z, depends on element size, resulting impedance mismatch when
the element size changes, resulting in reflections




Optimal Integration for Minimizing Reflection Error

[0 Minimize the error in impedance by using generalized integration rules

(~a +a)
2
A:% 1—[“4“ jkzth )
— 7 -A-B’- ik\/l— o
1 1-a% ), 5.5 .
P -1- 2 kh Error term

O Minimize the error term by choosing @ =0

B The error in impedance is completely eliminated! No more reflections

B Formally valid for more general 2" order equations (anisotropic, visco-
elasticity etc., electromagnetics etc. - G, 2006, CMAME)




Part 2. Absorbing Boundary Conditions

Perfectly Matched Discrete Layers
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Perfectly Matched Discrete Layers

...Impedance Preserving Discretization of PML

O Perfectly Matched Layers (PML) (Berenger, 1994; Chew et.al. 1995)

B Step 1: Bend the domain into complex space

%/ Reduced reflection into the interior
e —
L ok

| Step 2: discretize PMDL domain (in complex space)

O Impedance is no longer preserved; perfect matching is destroyed
O Requires a large number of carefully chosen PML layers
O Impedance preserving discretization comes to the rescue!

[ | Impedance is preserved/matched, irrespective of element length, small, large,
real, complex — Perfectly Matching Discrete Layers (PMDL)

. _ 2
B Discretize with 3-5 complex-length linear finite elements B I=ayer 1 —ikL,; /2
e 1+ikL, /2

No discretization error, but truncation causes
reflections. The reflection coefficient is derived as

j=1




PMDL vs PML.: Effectiveness of Midpoint Integration

[N
PMDL with 3 layers PML with 3 layers




PMDL: Some More Old Results

[0 Impedance preservation property is valid for any equation that is linear
and second order in space (G, CMAME, 2006)

B Elastic and other complicated wave equations (G, Lim & Zahid, 2007)

| jos i }r'
R

PMDL with 5 layers PML with 5 layers

[0 Evanescent waves can be treated effectively

B Padded PMDL - contains large real lengths with midpoint integration
(Zahid & G, CMAME, 2006)




Salient Features of PMDL

. j=nlayer k_k 2
O Exponential convergence R= [] | —/
j1 j

[0 Near optimal discretization
B Optimal: need staggered grids (with Druskin et al., 2003)

[0 Links PML to rational ABCs
B Lindman, Engquist-Majda, Higdon and variants (e.g. CRBC)
B We started this from E-M/Higdon ABCs (G, Tassoulas, 2000)
B Extensions to corners is straightforward

[0 Additional advantage: Provides solutions to some difficult cases
B Backpropagating waves: anisotropy
B PML for discrete/periodic media




PMDL for Backpropagating Waves

Opposing signs of phase and group velocities

[0 Backpropagating waves grow in the PML region

B PML cannot work! (Bécache, Fauqueux and Joly,
2003)

Reduced Reflection
into the i% Q \
/\ /\ [ PML result: radiation
\/ in anisotropic media
Interior

O A counter-intuitive idea: make the reflections in

PML region decay faster than the growth of the
incident wave

0 Works only with PMDL.:
needs impedance preserving discretization!

Result from PMDL after the fix
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Anisotropic elasticity - Tilted Elliptic Case

@

Arbitrary parameters Ideal Slowness Stable parameters

e _-_ P
LSS N e
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Anisotropic elasticity - Non-elliptic Case

Traditional mesh

Two different
coordinated materials




PMDL for Periodic Media (after discretization)

[0 Periodic media has internal reflections and
transmissions

B Constructive interference leads to long-range
propagation

[0 PML’s complex stretching spoils this balance and
internal reflections and transmissions get mixed up! .
PML for Lattice Waves:
7% reflections w/20 PML

[0 Basic Ideas (Discrete/Periodic PMDL): layers

B Periodic media = Discrete vector wave equation
(vector size = ndof in a cell)

B Discrete vector equation = impedance preserving
discretization of more complicated wave equation

m Apply PMDL on the complicated wave equation results
in impedance matching for periodic media

Discrete PMDL: less than
[0 Open problem: stability for complex problems LR G L o L 2B LBV
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Part 3. Two-Sided DtN Map

Complex-length Finite Element Method
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Facilitating the Approximation of 2-Sided DtN Map

2

[0 Consider the equation: —Z—g—a)zu =0, ze(O,L)
Z

A B
O Exact 2-sided DtN map: K,..= [B A}
0 By definition, exact DtN Map is impedance preserving: A>-B*=72__
[0 Consider impedance preserving discretization of the interval:
K oo = P ?}, A*-B*=27’

exact exact
B A

O Error in A and B would be similar since: A*-B*=2’,_ =A’-B’

O Approximating two-sided map reduces to approximating one-sided map

[0 Better derivation based on Crank-Nicolson discretization of the propagator




1D Helmholtz Equation
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Downward waves:




Propagator Approximation

Nicolson

i o |u
u —_
~~—— L 82 \7 |C() O Pexﬂcr
L
Valid for both + e { U }: [LKP{ iol)
Downward AND upward waves! ou I / Oz 0




Pade Approximant

: Imaginary
L [F]X
L, [+ |IX |
L [ *]X
i Real 5 (2n—))! (=x)] =
=2 (—x)!=0 — L,=2L/x,
JZ?J'(H—J)'
Complex-Length

Finite Element Method




Complex-Length FEM: Exponential Convergence

Relative Error

0 10 20 30 40

Number of complex FEs

Laplace Equation

Relative Error

Number of complex FEs

Helmholtz Equation
(can’t beat Nyquist limit)




Complex-Length FEM: Some Observations

O Exponentially convergent exp(al) = ; [T‘T ]
[ o

[0 Piecewise linear interpolation .

— sparse computation d! (exp(al)) _ diP,,
00 Edges do not move (3L;=L) do! . da' | |

— can be combined with other types of )

meshes for other subdomains (2n _

Z (-x)!'=0 — L;=2L/x

O Mesh is not bent outside (Re(L;)>0) i=0 J'(n— J)'

O Order of elements do not matter!
- more on this later.
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O With refinement, and proper ordering,
mesh converges to a smooth curve on
the complex plane
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Energy Conservation and Eigenvalue Problems

[0 Do complex lengths lead to energy O Do complex lengths lead to
absorption, like PML? complex eigenvalues of K

' ?
®m No, due to conjugate pair of with respect to M-

lengths — decay grows back! ®m No. Eigenvalues are real

nval
m 2-sided DtN Map is Hermitian Zel [PesTiE:

B Eigenvectors are complex
(K and M are complex
symmetric)
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Element Ordering
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Part 4. Near Surface Geophysical Site Characterization...
...using Guided Wave Inversion
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Guided Wave Dispersion
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Spectral Analysis

Frequency (1/s)

Phase Velocity (m/s) =
Wavenumber (1/m)
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Medium Characterization

Experimental

R = Dispersion Curve
< - y: Inverse Identification B
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[0 Optimization Scheme

B Gradient Based, e.g. Newton-like Methods Forward Problem:
B Global Search, e.g. Genetic Algorithm

Predicted Dispersion Curve




Forward Modeling — State of the Art

r—+ = < -
r 7 7 ',:‘ R
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Discretize Hankel Transform |:> Quadratic

Eigenvalue Problem Y
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Reducing the Problem Size: CFEM+PMDL

Imagina P
.. ginary 2R

Real

Finite Layers

A -
- - P -l - e

v

Complex-Length FEM Perfectly Matched discrete Layers
(Finite Layers) (Halfspace)




Forward Modeling: CFEM vs. FEM
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Inversion: Experimental Dispersion Curve
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Challenge
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Proposed Derivative for Experimental Curve

0 Analytical Derivative
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Proposed Derivative
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Inversion Results: Synthetic Examples

O Analytical Gradient
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Inversion Results: 14-Layer Soil Profile”
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Conclusions

[0 Discretization that perfectly preserves the impedance is possible

Linear FEM with midpoint integration preserves impedance
Related to Crank-Nicolson discretization of the propagator
Preserves the evanescence in PML region

O Absorbing Boundary Conds.: Perfectly Matched Discrete Layers (PMDL)
Exponential convergence

Link to other ABCs — we can get the best of both worlds

Facilitates stable ABCs for some backward propagating waves
Formally extensible to discrete periodic media

Open questions: Parameters of discretization for stability and accuracy




Conclusions (Contd.)

[0 Two-sided DtN Map

B Exponential convergence on the edges is possible with linear
interpolation: Complex-length Finite Element Method (CFEM)

O Impedance preserving discretization is the key!
B Currently based on Padé approximant; could be further optimized

B Open questions: further theoretical understanding; extensions to
variable coefficients and higher dimensions?

[0 Guided Wave Inversion

m Forward modeling: a good application of CFEM

B Approximate differentiation of the effective dispersion curve facilitates
faster convergence and efficient gradient computation

B Future work: Bayesian and hybrid inversion
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