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Part1. Impedance Preserving Discretization



Model Problem

 3D wave equation in free space

 Fourier transform in t, y, z, with 

 Exact solution:

 .                                    is a plane/evanescent wave 
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Finite Element Solution on a Uniform Grid in x

 FE discretization of:

 Element contribution matrix with uniform element size of h:

 Assembly results in the difference equation:
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Changing Mesh Size: Reflections

 A simple analysis using two uniform meshes with 
different element sizes (h, H), but the same material

 What happens when a right propagating wave hits the interface?

 Exact solution – just passes through

 Finite element solution – reflections due to impedance mismatch

: discrete impedance of left domain
    

: discrete impedance of right domain
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Computing Discrete Impedance (Half-space Stiffness)

 Basic idea: discrete half-space + finite element = discrete half-space

 .   depends on element size, resulting impedance mismatch when 
the element size changes, resulting in reflections
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Optimal Integration for Minimizing Reflection Error

 Minimize the error in impedance by using generalized integration rules 

 Minimize the error term by choosing 

 The error in impedance is completely eliminated! No more reflections

 Formally valid for more general 2nd order equations (anisotropic, visco-
elasticity etc., electromagnetics etc. – G, 2006, CMAME)
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Part 2. Absorbing Boundary Conditions

Perfectly Matched Discrete Layers



Perfectly Matched Discrete Layers
…Impedance Preserving Discretization of PML

 Perfectly Matched Layers (PML) (Berenger, 1994; Chew et.al. 1995)

 Step 1: Bend the domain into complex space

 Step 2: discretize PMDL domain (in complex space)

 Impedance is no longer preserved; perfect matching is destroyed

 Requires a large number of carefully chosen PML layers

 Impedance preserving discretization comes to the rescue! 

 Impedance is preserved/matched, irrespective of element length, small, large, 
real, complex – Perfectly Matching Discrete Layers (PMDL) 

 Discretize with 3-5 complex-length linear finite elements

 No discretization error, but truncation causes
reflections. The reflection coefficient is derived as

PML Region (imaginary or complex x)Interior (real x)

Reduced reflection into the interior

2

1

1 / 2

1 / 2

j nlayer
j

PMDL

j j

ikL
R

ikL





 
  

  


10

2ikL

PMLR e



PMDL vs PML: Effectiveness of Midpoint Integration

PMDL with 3 layers PML with 3 layers

11



 Impedance preservation property is valid for any equation that is linear 
and second order in space (G, CMAME, 2006)

 Elastic and other complicated wave equations (G, Lim & Zahid, 2007)

 Evanescent waves can be treated effectively

 Padded PMDL – contains large real lengths with midpoint integration 
(Zahid & G, CMAME, 2006)

PMDL with 5 layers PML with 5 layers

PMDL: Some More Old Results
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Salient Features of PMDL

 Exponential convergence

 Near optimal discretization

 Optimal: need staggered grids (with Druskin et al., 2003)

 Links PML to rational ABCs

 Lindman, Engquist-Majda, Higdon and variants (e.g. CRBC)

 We started this from E-M/Higdon ABCs (G, Tassoulas, 2000)

 Extensions to corners is straightforward

 Additional advantage: Provides solutions to some difficult cases

 Backpropagating waves: anisotropy

 PML for discrete/periodic media
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PML RegionInterior

PMDL for Backpropagating Waves
Opposing signs of phase and group velocities

 Backpropagating waves grow in the PML region

 PML cannot work! (Bécache, Fauqueux and Joly, 
2003)

PML result: radiation
in anisotropic media

Result from PMDL after the fix

Savadatti & G (2012), J Comp. Phys.

 A counter-intuitive idea: make the reflections in 
PML region decay faster than the growth of the 
incident wave

Reduced Reflection 
into the interior

 Works only with PMDL: 
needs impedance preserving discretization!
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Anisotropic elasticity – Tilted Elliptic Case

Stable parametersArbitrary parameters

15Savadatti & G (2012), J Comp. Phys.

Ideal Slowness



Anisotropic elasticity – Non-elliptic Case
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Two different 

coordinated materials

Traditional mesh

Savadatti & G (2012), J Comp. Phys.



PMDL for Periodic Media (after discretization)

 Periodic media has internal reflections and 
transmissions

 Constructive interference leads to long-range 
propagation

 PML’s complex stretching spoils this balance and 
internal reflections and transmissions get mixed up!

 Basic Ideas (Discrete/Periodic PMDL): 

 Periodic media = Discrete vector wave equation 
(vector size = ndof in a cell)

 Discrete vector equation = impedance preserving 
discretization of more complicated wave equation

 Apply PMDL on the complicated wave equation results 
in impedance matching for periodic media

 Open problem: stability for complex problems

PML for Lattice Waves:
7% reflections w/20 PML 

layers

Discrete PMDL: less than
1% error w/ 4 PMDL layers 

17G & Thirunavukkarasu, JCP (2009), Waves 2011



Part 3. Two-Sided DtN Map

Complex-length Finite Element Method



Facilitating the Approximation of 2-Sided DtN Map

 Consider the equation: 

 Exact 2-sided DtN map:

 By definition, exact DtN Map is impedance preserving:  

 Consider impedance preserving discretization of the interval:

 Error in A and B would be similar since:  

 Approximating two-sided map reduces to approximating one-sided map

 Better derivation based on Crank-Nicolson discretization of the propagator
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1D Helmholtz Equation
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Propagator Approximation
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Padé Approximant
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Complex-Length FEM: Exponential Convergence

Laplace Equation                               Helmholtz Equation
(can’t beat Nyquist limit)
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Complex-Length FEM: Some Observations

 Exponentially convergent

 Piecewise linear interpolation 
– sparse computation

 Edges do not move (∑Lj=L) 
– can be combined with other types of 
meshes for other subdomains

 Mesh is not bent outside (Re(Lj)>0)

 Order of elements do not matter! 
– more on this later.

 With refinement, and proper ordering, 
mesh converges to a smooth curve on 
the complex plane
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Energy Conservation and Eigenvalue Problems

 Do complex lengths lead to energy 
absorption, like PML?

 No, due to conjugate pair of 
lengths – decay grows back!

 2-sided DtN Map is Hermitian
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 Do complex lengths lead to 
complex eigenvalues of K 
with respect to M?

 No. Eigenvalues are real 
and positive!

 Eigenvectors are complex 
(K and M are complex 
symmetric)
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Element Ordering
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Part 4. Near Surface Geophysical Site Characterization…
…using Guided Wave Inversion



Guided Wave Dispersion

Low
Frequency

High 
Frequency

Dispersion Curve
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Spectral Analysis

FFT

Experimental 
Dispersion Curve

Phase Velocity (m/s) =
Frequency (1/s)

Wavenumber (1/m)
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Medium Characterization

Experimental 
Dispersion Curve

Inverse Identification
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Iteratively 
Minimize

 Optimization Scheme

 Gradient Based, e.g. Newton-like Methods

 Global Search, e.g. Genetic Algorithm

Forward Problem:
Predicted Dispersion Curve

Initial 
Guess
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Forward Modeling – State of the Art
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Reducing the Problem Size: CFEM+PMDL

32

Complex-Length FEM 

(Finite Layers)

Perfectly Matched discrete Layers 

(Halfspace)



Forward Modeling: CFEM vs. FEM
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Error in dispersion curve



34

Inversion: Experimental  Dispersion Curve

Experimental 
Dispersion Curve

Inverse 
Identification

240 Geophones 36 Geophones 12 Geophones

Experimental 
Dispersion 

Curve

1st (fundamental) Mode

2nd

Mode

3rd

Mode

4th

Mode

5th Mode
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Challenge

 No analytical derivative

 Rough misfit function 
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 Existing approach:  Finite Difference Method (FDM)

 Expensive: Multiple computations of dispersion curve

 Slow convergence: Oscillatory gradient
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 Analytical Derivative

Proposed Derivative for Experimental Curve
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 Analytical vs. FDM Gradient

Proposed Derivative
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 FDM Gradient

Inversion Results: Synthetic Examples
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 Analytical Gradient



Iterations

(Existing)

Iterations

(Proposed)

CPU Time

(Proposed)

CPU Time

(Existing)

14 8 11.3 s 2884.6 s

Inversion Results: 14-Layer Soil Profile†
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Analytical 
Gradient

FDM
Gradient

† Experimental data from: J Xia et al., J. Environ. Eng. Geophys., 5.3, 1-13 (2000)



Conclusions

 Discretization that perfectly preserves the impedance is possible

 Linear FEM with midpoint integration preserves impedance

 Related to Crank-Nicolson discretization of the propagator

 Preserves the evanescence in PML region

 Absorbing Boundary Conds.: Perfectly Matched Discrete Layers (PMDL)

 Exponential convergence

 Link to other ABCs – we can get the best of both worlds

 Facilitates stable ABCs for some backward propagating waves

 Formally extensible to discrete periodic media

 Open questions: Parameters of discretization for stability and accuracy
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Conclusions (Contd.)

 Two-sided DtN Map

 Exponential convergence on the edges is possible with linear 
interpolation: Complex-length Finite Element Method (CFEM)

 Impedance preserving discretization is the key!

 Currently based on Padé approximant; could be further optimized

 Open questions: further theoretical understanding; extensions to 
variable coefficients and higher dimensions?

 Guided Wave Inversion

 Forward modeling: a good application of CFEM

 Approximate differentiation of the effective dispersion curve facilitates 
faster convergence and efficient gradient computation

 Future work: Bayesian and hybrid inversion
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